
2019-09-13

1

ECE 150 Fundamentals of ProgrammingECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D.

dwharder@uwaterloo.ca hiren.patel@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D.

dwharder@uwaterloo.ca hiren.patel@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Functions

2
FunctionsFunctions

Outline

• In this lesson, we will:

– Review mathematical functions

– Look at the use of functions in C++

– Describe function declarations

• Their relation to the domain and range

– Parameters and arguments

– Example: a fast sine function

– Side effects

– Functions with no return values

• The void keyword

– A second-last look at understanding int main()

3
FunctionsFunctions

Using functions

• In secondary school mathematics courses, you were introduced to
numerous functions:

– The trigonometric functions

• Possibly including hyperbolic functions and the inverses of these

– The exponential and logarithmic functions

– The absolute value

– The square root

– The ceiling and floor functions

– The greatest common divisor and least common multiple functions

– The maximum or minimum of two arguments

   sin , cos , etc.x x

   10, ln , logxe x x

x

x

,x x      

   gcd , , lcm ,m n m n

   max , , min ,m n m n

4
FunctionsFunctions

Using functions

• All of these have some properties in common:

– Each function requires a fixed number of arguments that must be of
a certain type, either integers or real numbers

– Given the same arguments, the functions return the same value

• Many of these functions are implemented in the cmath library

2019-09-13

2

5
FunctionsFunctions

Using functions

#include <iostream>

#include <cmath>

int main();

int main() {

std::cout << "sin(3.2) = " << std::sin(3.2) << std::endl;

std::cout << "tan(3.2) = " << std::tan(3.2) << std::endl;

std::cout << "csc(3.2) = " << (1.0/std::sin(3.2)) << std::endl;

std::cout << "cot(3.2) = " << (1.0/std::tan(3.2)) << std::endl;

std::cout << "sinh(3.2) = " << std::sinh(3.2) << std::endl;

std::cout << "tanh(3.2) = " << std::tanh(3.2) << std::endl;

std::cout << "acos(0.2) = " << std::acos(0.2) << std::endl;

std::cout << "asech(0.2) = " << std::acosh(1.0/0.2) << std::endl;

return 0;

}

Must use std::sin(3.2)
– Mathematicians sometimes use sinq or sin2q

Output:
sin(3.2) = -0.0583741
tan(3.2) = 0.0584739
csc(3.2) = -17.1309
cot(3.2) = 17.1017
sinh(3.2) = 12.2459
tanh(3.2) = 0.996682
acos(0.2) = 1.36944
asech(0.2) = 2.29243

6
FunctionsFunctions

Using functions

• In each case, the argument is of type double

– A double-precision floating-point number

– The output is a floating-point number

– The compiler knows this, so while you compile

std::cout << std::sin(32);

the compiler knows that:

• The integer 32 must be converted to a floating-point number

• The above statement must call the routines for printing a floating-
point number

7
FunctionsFunctions

Function declarations

• How does the compiler know this about the sine function?

– We must declare the sine function in a manner similar to main()

int main();

• This says main() does not have any parameters and it returns an
integer

• For the sine function, we know it has a domain and range:

sin : R R

name domain range

8
FunctionsFunctions

Function declarations

• Suppose we wanted to define a polynomial p such that when it is
called with an argument x, it returns the value

• To this point, we have seen that int represents that the return type

is an integer

– Polynomials, however, are defined for all real numbers

• Floating point numbers in C++

– A type for floating-point numbers is double

• Short for double-precision floating-point numbers

25 3 9x x 

2019-09-13

3

9
FunctionsFunctions

Function parameters

• Additionally, the polynomial

requires a variable or parameter x

– x can take on any real value, so we call it a variable

– The result of the polynomial depends on x, so we say x is a
parameter

• The function declaration is

double p(double x);

• This function:

– Has the identifier p

– Takes a variable parameter x that must be a floating-point number

– Returns a floating-point number

25 3 9x x 

10
FunctionsFunctions

Function definitions

• The function int main() simply returned 0

– To evaluate

we must perform an arithmetic calculation

• The function definition would be:

double p(double x) {

return 5.0*x*x - 3.0*x - 9.0;

}

 
def

25 3 9p x x x  

Using 5.0 emphasizes to the reader

that it is a floating-point number.

11
FunctionsFunctions

Parameters and arguments

• In the function definition, variable x is referred to as a parameter:

double p(double x) {

return 5.0*x*x – 3.0*x – 9.0;

}

• If you call this function with a value that is to be used in the
function, that value is said to be the argument:

int main() {

std::cout << "p(4.2) = " << p(4.2)

<< std::endl;

return 0;

}

the parameter x

the argument 4.2

12
FunctionsFunctions

Another example

• Suppose we wanted to define a bivariate polynomial q such that
when it is called with arguments x and y, it returns the value

• The function declaration and definitions could be

double q(double x, double y);

double q(double x, double y) {

return x*x - 2*x*y + y*y;

}

  2 22x xy y x y x y    

Alternate function definition:
double q(double x, double y) {

return (x - y)*(x - y);
}

2019-09-13

4

13
FunctionsFunctions

Another example

• Question: which implementation is faster?

double q(double x, double y) { double q(double x, double y) {

return x*x - 2*x*y + y*y; return (x - y)*(x - y);

} }

• These require:

– Four multiplications and two addition/subtractions

– One multiplication and two addition/subtractions (or just one?)

14
FunctionsFunctions

The greatest common divisor

• The greatest common divisor (gcd) is another function you saw in
secondary school

– E.g., gcd(42, 70) = 14

– It depends on two integer parameters and returns an integer

– Its function declaration would be

unsigned int gcd(int m, int n);

gcd :  Z Z N

name domain range

natural numbersCartesian product of two sets of integers

15
FunctionsFunctions

Other examples

• Some functions you saw in secondary school were represented
graphically:

– Exponents were written as superscripts:

– The square root was written with a radical symbol:

– nth roots had even further decorations:

– The absolute value was two bars:

• In C++, we are restricted to functions and identifiers:

double pow(double x, double y);

double sqrt(double x);

double sqrt(double x, int n);

double abs(double x);

x

n x

x

yx

16
FunctionsFunctions

Other examples

• The standard mathematics library has some of these:

double std::pow(double x, double y);

double std::sqrt(double x);

double std::abs(double x);

• For the nth root, the user is expected to use pow:
1

n nx x

2019-09-13

5

17
FunctionsFunctions

A fast sine function

• Engineers are always concerned with the trade-off between
precision and speed (run times)

– The std::sin(…) function gives 16-decimal digits of precision

– It’s also relatively slow

• Suppose we know we only need to calculate sin(x) for

• Can we find a good enough approximation of sin(x) restricted to this
interval?

0
2

x


 

18
FunctionsFunctions

A fast sine function

• Without proof, the polynomial

satisfies:

• The value of these coefficients are:

  3 2

3 2

4 16 12 4
p x x x x

 

 

 
  

 0 0p  1
2

p
 

 
 

d
0

d 2

p

x

 
 

 

3

4 16
0.11073981636184074






 

2

12 4
0.057385341027109429






 

 
d

0 1
d

p

x


19
FunctionsFunctions

A fast sine function

• We can thus implement:

as

double fast_sin(double x);

double fast_sin(double x) {

return -0.11073981636184074*x*x*x

- 0.057385341027109429*x*x + x;

}

  3 2

3 2

4 16 12 4
p x x x x

 

 

 
  

20
FunctionsFunctions

A faster sine function

• We can even reduce the number of multiplications by one:

double fast_sin(double x);

double fast_sin(double x) {

return ((-0.11073981636184074*x

- 0.057385341027109429)*x + 1.0)*x;

}

as   3 2ax bx cx ax b x c x    

2019-09-13

6

21
FunctionsFunctions

A fast sine function

• Comparing sin(x) and our approximation:

sin(x)

Note that

3 2

3 2

4 16 12 4
x x x

 

 

 
 

 3 2

3 2

4 16 12 4
sinx x x x

 

 

 
  

The absolute error is less
than 0.011 on [0, /2]

22
FunctionsFunctions

Comments

• Functions must be commented to ensure other programmers know
what is expected

– Comments must be in English, not pseudocode or obvious

// Function declarations

double fast_sin(double x);

// Function definitions

/* double fast_sin(double x)

*

* A function that quickly calculates sin(x) for values

* that satisfy 0 <= x <= pi/2

*/

double fast_sin(double x) {

return ((-0.11073981636184074*x

- 0.057385341027109429)*x + 1.0)*x;

}

Line comments:
– from // to the end of the line

Block comments:
– from /* to */

23
FunctionsFunctions

Other functions

• Most functions require more than simple calculations

– Most require decision making processes:

– Others require a repetitive algorithm until some condition is met

• E.g., finding the gcd, calculating the square root

– In some cases, some functions can be defined in terms of others

• E.g., the least common multiple:

0

0

x x
x

x x


 

 
 max ,

x x y
x y

y x y


 



 
 

lcm ,
gcd ,

mn
m n

m n


 min ,
x x y

x y
y x y


 



24
FunctionsFunctions

Side effects

• In mathematics, the result of a function depends entirely on the
arguments

– Anything else a function does is called a side-effect

– The side-effect of the int main() function is to print “Hello world!”
to the console output

• A side effect of this function is to record to a log file what was being
calculated

double fast_sin(double x);

double fast_sin(double x) {

std::clog << "Calculating p(" << x << ")" << std::endl;

return ((-0.11073981636184074*x

- 0.057385341027109429)*x + 1.0)*x;

}

2019-09-13

7

25
FunctionsFunctions

No return value

• Some functions have no return value:

– Such functions are identified by describing the return type as void:

void print_my_name();

void print_my_name() {

std::cout << "Zaphod Beeblebrox" << std::endl;

return;

}

No return value

Just return, don’t return any value
– You can even leave this off

26
FunctionsFunctions

The keyword void

• The identifier void is a keyword in C++

– Problem: every identifier that is used as a keyword restricts the
identifiers that may be used by the programmers

– Problem: too many keywords frustrate programmers

– Solution: use the same keyword to mean different things in different
contexts…

• In English, homographic homonyms are a source of puns:

– “He picked up his saw.”

– “That was something she saw.”

– “Did you hear about the miracle of the carpenter who was cured of
blindness? He picked up his hammer and saw.”

• We will see void used in two different contexts—get used to it now

27
FunctionsFunctions

Why not void main() ?

• The function declaration for main() has it returning an int

– Executing programs can cause other programs to execute

• When a program exits, the value returned by main() could be used

by the program that launched it

– The value 0 is generally used to indicate “a successful execution”

– If something went wrong, the program could return a non-zero
integer that can be used to flag what the issue was

• For this course, main()will always return 0

28
FunctionsFunctions

Arithmetic expression

• We have already described how an arithmetic expression can be any
sum, difference, product or ratio of either integers or floating-point
numbers

– We can now also allow the operands to be functions that return
either integers or floating-point numbers

• For example, this function returns a valid arithmetic expression:
double f(double x, double y) {

return -(3.0 + y)*(1.0 + 2.0*(std::sin(x) - y));

}

2019-09-13

8

29
FunctionsFunctions

Summary

• Following this lesson, you now:

– Understand that functions in C++ are called like functions in math

– Understand the purpose of the function declaration:

• The type of any parameters and the type of the return value

– Know the difference between parameters and arguments

– Know how to implement a simple function

– Can describe the difference between the return value and side effects

– Know how to indicate a function has no return value: void

– Understand the int main() function

30
FunctionsFunctions

References

[1] cplusplus.com

http://www.cplusplus.com/reference/cmath/

[2] Wikipedia: block comments
https://en.wikipedia.org/wiki/Comment_(computer_programming)#Block_comment

[3] Wikipedia: line comments

https://en.wikipedia.org/wiki/Comment_(computer_programming)#Line_comments

31
FunctionsFunctions

Additional note

• If your goal is different, you can get different functions:

• This minimizes the relative error on the interval [0, /2] to less than
0.35%

– It will never be more than 0.35% different than the actual value

 
def

3 20.12982726700166469 0.031041616418863258 1.0034924244212799p x x x x   

   

 

sin

sin

p x x

x



32
FunctionsFunctions

Additional note

• The implementation should reduce the number of necessary
operations

double sin_min_rel_err(double x);

double sin_min_rel_err(double x) {

return ((

-0.12982726700166469*x - 0.031041616418863258

)*x + 1.0034924244212799)*x;

}

3 20.12982726700166469 0.031041616418863258 1.0034924244212799x x x  

Incidentally, the absolute error is less than 0.0033

on [0, /2], so it’s also better than our first
approximate with respect to absolute error…

http://www.cplusplus.com/reference/cmath/
https://en.wikipedia.org/wiki/Comment_(computer_programming)#Block_comment
https://en.wikipedia.org/wiki/Comment_(computer_programming)#Line_comments

2019-09-13

9

33
FunctionsFunctions

Acknowledgments

Proof read by Dr. Thomas McConkey.

34
FunctionsFunctions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

35
FunctionsFunctions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

